《曲線和方程》說課稿
各位領(lǐng)導(dǎo)、專家、同仁:您們好!
我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!
根據(jù)以上分析,確立教學(xué)重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認知特點確定教學(xué)目標(biāo)如下:
知識目標(biāo):
1、了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系;
2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;
3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結(jié)論;
4、強化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
能力目標(biāo):
1、通過直線方程的引入,加強學(xué)生對方程的解和曲線上的點的一一對應(yīng)關(guān)系的認識;
2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點;
3、能用所學(xué)知識理解新的概念,并能運用概念解決實際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。
情感目標(biāo):
1、通過概念的引入,讓學(xué)生感受從特殊到一般的認知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
三、重難點突破
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學(xué)生在作業(yè)中容易犯想當(dāng)然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標(biāo)的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認識(特別是二元一次方程表示直線),現(xiàn)在要進一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關(guān)系的區(qū)別。
五、教法分析
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷嵺`的研究者,或研究的實踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個基本步驟,重點采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。
從實例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。
利用多媒體輔助教學(xué),節(jié)省了時間,增大了信息量,增強了直觀形象性。
六、學(xué)法分析
基礎(chǔ)教育課程改革要求加強學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動參與,親身實踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動參與,親身實踐,獨立思考,與合作探究相結(jié)合,在生生合作,師生互動中,使學(xué)生真正成為知識的發(fā)現(xiàn)者和知識的研究者。
七、教學(xué)過程分析
1、感性認識階段——以舊帶新、提出課題
(出示幻燈片2)